On using the He’s polynomials for solving the nonlinear coupled evolution equations in mathematical physics
نویسنده
چکیده
In this article, we apply the modified variational iteration method for solving the (1+1)dimensional Ramani equations and the (1+1)-dimensional Joulent Moidek (JM) equations together with the initial conditions. The proposed method is modified the variational iteration method by the introducing He’s polynomials in the correction functional. The analytical results are calculated in terms of convergent series with easily computated components. Key–Words: Variational iteration method, Homotopy perturbation methods, Coupled nonlinear evaluation equations, Exact solutions
منابع مشابه
Modified Wavelet Method for Solving Two-dimensional Coupled System of Evolution Equations
As two-dimensional coupled system of nonlinear partial differential equations does not give enough smooth solutions, when approximated by linear, quadratic and cubic polynomials and gives poor convergence or no convergence. In such cases, approximation by zero degree polynomials like Haar wavelets (continuous functions with finite jumps) are most suitable and reliable. Therefore, modified numer...
متن کاملTHE USE OF THE HE'S ITERATION METHOD FOR SOLVING NONLINEAR EQUATIONS USING CADNA LIBRARY
In this paper, we apply the Newton’s and He’s iteration formulas in order to solve the nonlinear algebraic equations. In this case, we use the stochastic arithmetic and the CESTAC method to validate the results. We show that the He’s iteration formula is more reliable than the Newton’s iteration formula by using the CADNA library.
متن کاملApplications of He’s Variational Principle method and the Kudryashov method to nonlinear time-fractional differential equations
In this paper, we establish exact solutions for the time-fractional Klein-Gordon equation, and the time-fractional Hirota-Satsuma coupled KdV system. The He’s semi-inverse and the Kudryashov methods are used to construct exact solutions of these equations. We apply He’s semi-inverse method to establish a variational theory for the time-fractional Klein-Gordon equation, and the time-fractiona...
متن کاملNumerical solution of the spread of infectious diseases mathematical model based on shifted Bernstein polynomials
The Volterra delay integral equations have numerous applications in various branches of science, including biology, ecology, physics and modeling of engineering and natural sciences. In many cases, it is difficult to obtain analytical solutions of these equations. So, numerical methods as an efficient approximation method for solving Volterra delay integral equations are of interest to many res...
متن کاملChebyshev finite difference method for solving a mathematical model arising in wastewater treatment plants
The Chebyshev finite difference method is applied to solve a system of two coupled nonlinear Lane-Emden differential equations arising in mathematical modelling of the excess sludge production from wastewater treatment plants. This method is based on a combination of the useful properties of Chebyshev polynomials approximation and finite difference method. The approach consists of reducing the ...
متن کامل